
JDK 8 Lambdas and Streams MOOC: Lesson 3 Homework

The homework this week is in three parts. The goal of the exercise is to give you
a better understanding of the differences in performance of sequential and
parallel stream processing.

Part 1: A file called “words” is provided containing a large collection of words. A
template file, RandomWords.java, is also provided. In the constructor you need
to read all the words (which are one per line) from the source file into a list
(remember to use a stream to do this).

You also need to write the body of the createList() method. This generates a list
of the size specified as a parameter selecting words at random from the list read
in the constructor. HINT: You can use the ints() method of the Random class,
which returns a stream of random integers. You can specify the size of the
stream using a parameter.

Part 2: In order to provide a relatively compute-intensive task we will calculate
the Levenshtein distance between two strings. This distance is a measure of how
many changes need to be made to the first string to convert it to the second
string (see https://en.wikipedia.org/wiki/Levenshtein_distance for a more
detailed description of what this involves). Since we’re focusing on streams
programming, a source file, Levenshtein.java containing a lev() function is
provided that will calculate the distance for you.

A second template file, Lesson3.java, is provided. This contains the code
necessary to measure the time taken to execute the code of the get() method of a
Supplier (as you will see in the main() method this is simple to do with a lambda
expression).

Your task is to write the necessary code in the computeLevenshtein method to
calculate the distances between each pair of strings in the wordList using the
streams API. You will need to process this sequentially or in parallel based on
the flag passed as a parameter.

Try modifying the size of the wordList to see what impact this has on the
performance, and in particular, how the difference between sequential and
parallel performance is affected by the input size.

Part 3: As another demonstration of the differences in sequential and parallel
stream processing there is a second method, processWords() for you to
implement. Take the list of strings passed and process these using a sequential
or parallel stream as required to generate a new list. Start by simply sorting the
strings then experiment with adding things like mapping to lower or upper case,
filtering out certain words (such as those beginning with a certain letter). See
what impact adding distinct() to the stream has. For each of these vary the size

https://en.wikipedia.org/wiki/Levenshtein_distance

of the input list to see how this affects the performance. Find the threshold
below which sequential will give a faster answer than parallel.

NOTE: Because this is a micro-benchmark the results will not give you a totally
accurate measure of the difference between sequential and parallel stream
operations. It is good enough, however, to illustrate the differences between the
two forms of stream processing in this case.

